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Overview

• PINNs (Physics-Informed Neural Networks) is a method that aims at 
more accurate prediction by incorporating physics-based constraint 
formulas into neural networks. Recently, the PINNs module, Modulus, 
is being offered by NVIDIA, and is attracting a lot of attention.

• In this study, NVIDIA Modulus was applied to a simple cantilevered 
beam static analysis surrogate model to evaluate its performance. 

• When training PINNs, there are cases where only physical equations 
are used, and other cases where data such as FEM analysis results and 
theoretical solutions are referenced together. In this case, we 
proceeded with the verification using the procedure on the next page.

• Furthermore, the conclusions are summarized at the end of this paper. 
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Verification Procedure

1. Training was performed on a cantilevered beam model with fixed geometry, 
using only the physical equations as loss functions. (page 5)

2. As good result were obtained, theoretical solution reference data were 
added to the loss function with the aim of reducing training time. (page 9)

3. As the time savings due to the theoretical solution references were 
confirmed, the shape change compliance was verified by using the length 
direction of the shape as a parameter. (page 10)

4. A good result was not obtained, and a theoretical solution reference was 
added. Accuracy was improved, but there were inaccuracies, e.g. in the 
middle of the beam. (page 12)

5. The theoretical solution reference position was appropriately increased and 
further parameterized in all three directions of the geometry to validate a 
more advanced shape parameter model. (page 15)

3



NVIDIA Modulus

• To utilize PINNs, NVIDIA Modulus is used to solve the mechanics 
problem using Category I (no data references) and Category II (data 
integration/small data references).

Category I Category II Category III
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Verification by simple beam model

F = 1e5N

Dim : 0.1 x 0.2 x 1 m

Mat = E    : 210e9 Pa

nu : 0.3 

Theoretical value :

Displacement = 2.38 mm

• Training was attempted for this 
problem using PINNs and without 
theoretical solution data 
references. Therefore, only 
physical equations are used.
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Equations used for PINN

• The equations used are already included in the modulus 
package.“LinearElasticity”
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Training progress graph

500-600K training steps required to achieve good results

Displacement U (X direction) Displacement V (Y direction) Displacement W (Z direction)
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Comparison of displacement prediction 
results

color contour : FEA result
magenta dots : PINNs result

displacement magnitude Error Comparison(FEA – PINNs)
Error < 1%
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Verification to reduce training time by 
referencing theoretical values at the free end

Light blue (see theoretical solution) Purple (physical equation only)
Even if only reference information on disp w is given, disp u also improves the convergence speed.

Displacement U (X direction) Displacement V (Y direction) Displacement W (Z direction)
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Verification by simple parametric 
geometry

F = 1e5N

Dim : 0.1 x 0.2 x L
m

Mat = E    : 210e9 Pa

nu : 0.3 

L is the parametric length : 
L used for training : 1, 2, 3, 4, 5 m.

Training is performed using only physical losses, 
so, training data is not referenced. 
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Training results 
Left: PINNs Right: FEM

Length PINNs FEM Error

1 m -2.4 mm -2.4 mm 0.012

2 m -15 mm -19 mm 0.2

3 m -17 mm -64 mm 0.73

4 m -16 mm -152 mm 0.89

5 m -15 mm -297 mm 0.94

Results for PINNs other than 1m do not agree 
with FEA results. 11



Result of adding theoretical value references to 
the free end of the parametric model

Length PINNs FEM

1 m -2.4 mm -2.4 mm

2 m -19 mm -19 mm

3 m -64 mm -64 mm

4 m -150 mm -152 mm

5 m -300 mm -297 mm

When referring to theoretical values at 
the free end, PINNs displacement 
results improve significantly in just less 
than 200k steps.
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Displacement prediction results

• The maximum displacement at the free end is good, but there are 
still deviations in the displacement results elsewhere on the 
model when training a small number of steps.

1 m length 3 m length 5 m length

color contour : FEA result
Green dots : PINNs result
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Relative error distribution

1 m length 3 m length 5 m length

Results show more error reduction with longer training times. Above are the results for 200k 
steps. Accuracy is improved from the edges, as there are more errors at the center position 
than at both edges.
For the neural network to learn the bending behavior of the beam, it would be effective to also 
refer to the displacement at the mid-length position. This will be reflected in the next case 
study.
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Theoretical solution data reference 
parametric shape verification -Part 2

F = 1e5N

Dim : w x h x L m

Mat = E    : 210e9 Pa

nu : 0.3 

L, w, h are parametric lengths: 
L used for training: 0.5, 1, 2 m.
w used for training: 0.1, 0.2, 0.3 m.
h used for training: 0.15, 0.25, 0.35 m.

The loss function for this study is optimized from the 
physical equations, free end displacements, and 
intermediate length displacements. 
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Predicted result on the same size used 
for training

0.2, 0.25, 0.5 0.1, 0.25, 1 0.3, 0.15, 2

Basically, the PINNs results are close to the FEA, although some differences can 
be observed in some points. 
However, when comparing the FEA results with the PINNs results, the PINNs 
results are better compared to the theoretical values. (due to the theoretical 
value reference, not the FEM solution).

color contour : FEA result
magenta dots : PINNs result
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Prediction results for random shape 
sizes

(0.255, 0.322, 1.5) (0.255, 0.222, 0.75) (0.155, 0.222, 1.5)

Results of randomly predicting unknown shape dimensions using the weights 
and parameters used in training. Good predictions at 0.75 m length, but more 
errors occur at 1.5 m length.

color contour : FEA result
magenta dots : PINNs result
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Conclusion.

• NVIDIA Modulus could be used for PINNs for simple 
mechanical problems.

• Training the network on a geometry containing several shape 
parameters may allow instant prediction of the solution for 
an unknown geometry.

• Training takes a long time, but training time can be reduced 
if some data (FEA/experiments) is referred to for training.
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The end
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